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Abstract. The security of network services and their protocols critically depends
on minimizing their attack surface. A single flaw in an implementation can suffice
to compromise a service and expose sensitive data to an attacker. The discovery of
vulnerabilities in protocol implementations, however, is a challenging task: While
for standard protocols this process can be conducted with regular techniques for
auditing, the situation becomes difficult for proprietary protocols if neither the
program code nor the specification of the protocol are easily accessible. As a result,
vulnerabilities in closed-source implementations can often remain undiscovered
for a longer period of time. In this paper, we present PULSAR, a method for stateful
black-box fuzzing of proprietary network protocols. Our method combines con-
cepts from fuzz testing with techniques for automatic protocol reverse engineering
and simulation. It proceeds by observing the traffic of a proprietary protocol and
inferring a generative model for message formats and protocol states that can not
only analyze but also simulate communication. During fuzzing this simulation can
effectively explore the protocol state space and thereby enables uncovering vul-
nerabilities deep inside the protocol implementation. We demonstrate the efficacy
of PULSAR in two case studies, where it identifies known as well as unknown
vulnerabilities.
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1 Introduction

A myriad of network services and protocols is employed in today’s computer networks,
ranging from classic protocols of the Internet suite to proprietary binary protocols
implemented only by particular vendors. While these network services steadily expand
their capabilities, securing their functionality still remains a challenging task: A single
vulnerability in the implementation of a protocol can suffice to undermine the security
of a network service and expose sensitive data to an attacker. For example, a flaw in the
implementation of the universal plug-and-play protocol rendered roughly 23 million
routers vulnerable to attacks from the Internet [27].



Several methods for locating and eliminating vulnerabilities in protocol implemen-
tations have been proposed in the last years, each addressing different aspects of the
problem. For example, if the implementation of the protocol is easily accessible, different
techniques from program analysis can be applied for hunting down security flaws, such
as white-box fuzzing [e.g., 13, 15], dynamic taint tracking [e.g., 9, 34], symbolic execu-
tion [e.g., 7, 31] and static code analysis [e.g., 18, 25, 36, 37]. The situation, however,
changes fundamentally if neither the code nor the specification of the protocol are directly
accessible. While in some cases there are means for retrieving the implementation of a
protocol, for example by reading out a firmware image or reverse-engineering a binary
package, the complexity of this effort may still impede a sufficient security analysis.

Only few approaches exist [14, 17] that can help spotting vulnerabilities in settings
where code and specifications are hard to obtain. These approaches provide first means
for automatically inferring fuzzers for proprietary protocols if a program analysis is
not possible or difficult to carry out. Due to the lack of insights in the protocol code;
however, these approaches are not capable of guiding the fuzzing process through the
implementation. As a consequence, flaws that are linked to deep states in the protocol
implementation are hard to reach efficiently.

In this paper, we present PULSAR, a method for stateful black-box fuzzing of
proprietary network protocols. Our method combines concepts from fuzz testing with
techniques for automatic protocol reverse engineering and simulation. It proceeds by
observing the network traffic of an unknown protocol and inferring a generative model
for message formats and protocol states that can not only analyze but also simulate
communication. In contrast to previous approaches, this model enables effectively
exploring the protocol state space during fuzzing and directing the analysis to states
which are particularly suitable for fuzz testing. This guided fuzzing allows for uncovering
vulnerabilities deep inside the protocol implementation. Moreover, by being part of the
communication, PULSAR can increase the coverage of the state space, resulting in less
but more effective testing iterations.

We empirically evaluate the capabilities of PULSAR in two case studies. First, we
analyze the standard text-based protocol FTP as an illustrative example and then proceed
to applying PULSAR to the proprietary binary protocol OSCAR, implemented in many
instant messengers. To demonstrate the efficacy of simulating network communication,
we direct our fuzzer against clients of the respective protocols, as these are harder to test
with regular fuzzers due to their active role in the communication. In both case studies,
PULSAR is able to spot known flaws in these clients, but also hints us to previously
unknown vulnerabilities.

The rest of the paper is organized as follows: we introduce our method for stateful
fuzzing of proprietary protocols in Section 2 and evaluate its efficacy in Section 3.
Limitations and related work are discussed in Section 4 and 5, respectively. Section 6
concludes the paper.



2 Methodology

(1) Model Inference (2) Test Case Generation (3) Model Coverage
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Fig. 1: Overview of PULSAR and the different analysis steps.

The goal of PULSAR is to be able to effectively fuzz the implementation of proprietary
protocols for which no specification exits and the underlying code is hard to analyze. In
order to achieve this, our method starts by inferring a model of the protocol including
its state machine and the format of the messages. The combination of both elements
allow us to actively control the communication in order to guide the fuzzing process
and to build faulty inputs that are sent to the network service. As explained in Figure 1,
PULSAR proceeds in the following steps:

1. Model inference. A sample of network traces from the protocol under test is captured
and a model is inferred from its messages. This include a Markov model repre-
senting the state machine of the protocol, templates that identify the format of the
messages and rules that track the data flow between messages during communication.

2. Test case generation. The extracted templates and rules enable defining a set of
fuzzing primitives that can be applied to message fields at specific stages of the
communication. Using these primitives, test cases for black-box fuzzing are auto-
matically generated.

3. Model Coverage. To increase the coverage of the security analysis, protocol states
that are particularly suitable for fuzzing are selected. To this end, the fuzzer is
guided to subgraphs in the state machine that are rarely visited and contain the
largest number of messages with variable input fields.

PULSAR is implemented as an open-source tool' that once placed in the network can
operate as a service or client and simulate communication with the corresponding party.
In the following we describe the three steps conducted by PULSAR in more detail.

2.1 Model Inference

While model-based fuzz testing outperforms brute force fuzzing [30], it also does rely
heavily on the quality of the specification used for the generation of the test cases. In the
case of fuzzers whose goal is to identify errors in the implementation of well-known pro-
tocols, these models can be built on the basis of existing RFCs or proper documentation.

Thttps://github.com/hgascon/pulsar



On the contrary, poorly documented or totally closed proprietary protocols represent a
tough challenge for such methods.

To address this problem, our method builds on the techniques introduced by Krueger
et al. with PRISMA [19], a probabilistic approach to model both the message content
and the state machine of an unknown protocol solely relying on standard captures of
network traffic. The quality of these models surpasses that of previous works targeting
the problem of reverse engineering network protocols without the need to access the
binary implementation. As detailed in Section 3, the inferred model allows our method
not only to generate relevant security test cases but to simulate the inputs and outputs of
a real entity within the environment of the system under test.

Data Acquisition. In a real scenario, a software application usually communicates with
different entities in the network, establishing several connections based on different
protocols. As a fuzzing session of PULSAR targets an individual service, we start by
capturing all traffic transmitted and received by an application between a unique com-
bination of source and destination IPs and PORTSs. Then, we re-assemble the captured
packages and feed the complete streams into a session extractor. A session identifier is
assigned to each one of the streams. If no packet is received for a selected time interval,
a session will be marked as terminated, so that a new packet within the same connection
will belong to a new session. The interval can be provided as a parameter and tuned to
suit the rate of new connections established by the application under test.

We need to note here that a model learned from network traces alone may naturally
lack parts of the functionality of the protocol if this functionality has not been observed
during the training phase. Therefore, the analyst can generate specific interactions with
the test application to model the inputs and outputs of the system that need to be audited.

Message Clustering. After traffic recording and session identification, we model each
message as a sequence of bytes. To infer common structures among the series of messages
we begin by mapping these sequences of bytes into a finite-dimensional vector space for
clustering by the following two strategies.

For text-based protocols, where messages are typically formed by string tokens
separated by pre-defined characters, each dimension is associated with an individual
token in the feature vector. Thus, each dimension indicates the occurrences of a specific
token within a message. In the case of binary protocols, we follow a similar approach
where each individual n-gram (i.e., series of bytes of a specific length) within a message
is mapped to the correspondent dimension in the feature vector. As the goal of this
analysis phase is to model the different types of messages of the protocol, we proceed
with a dimensionality reduction phase that allows the clustering algorithm to focus on
the most discriminative characteristics from each message. Following the design of
PRISMA [19], we use a simple statistical test [16] to remove volatile features, such as
cookies and random strings, and constant elements that occur in almost every message.

Once that each message is represented as a vector, we use the Euclidean distance
as similarity metric to apply the clustering algorithm. This allow us to extract common
message structures which typically occur during a certain stage of the modeled protocol.
Since most protocols are assembled from parts, we apply the non-negative matrix
factorization algorithm (NMF) for part-based clustering [21]. NMF is an effective and



well-known clustering algorithm that represents given data as a factorization of the data
matrix (features x traces). After elimination of duplicated entries, the solution to the
optimization problem let us identify clusters of messages that share similar structure and
therefore belong to the same type.

Protocol State Machine. Network protocols are inherently defined by their state ma-
chine. As the exact state machine can only be inferred from the actual implementation
of the protocol, PULSAR approximates the state machine from observed network traces.
To this end, we annotate each message indicating if it has been generated by the client
or the server. For this annotated version, a sliding window of size two links each mes-
sage to previously observed traces. By computing the probabilities over these linked
messages, we finally arrive at a second order Markov model that provides a probabilistic
approximation of the real state machine.

Next, we minimize this Markov model into a deterministic finite automaton (DFA).
To this end, we keep transitions with probabilities larger than zero and their associated
states and at each transition we modify the DFA to accept the event of the second state.
The DFA minimization algorithm introduced by Moore [26] let us generate an equivalent
DFA that accepts the same language but with a smaller number of states, which allows
the security analyst to manually inspect the model if required.

Message Format. In the clustering step we identify common tokens in the recorded
messages. The position where these tokens occur in a session during the communication
can be linked to a correspondent transition in the state machine. This enables us to
correlate tokens with the state of the service. By analyzing the tokens of messages which
are observable at the same state, we can improve the initial clustering stage and extract
generic format definitions for these messages that we call templates.

In particular, after tokenizing each message according to the type of protocol (i.e.
text-based or binary) and the embedding used (i.e. token or byte n-gram), we assign each
message of a session to the corresponding state of the Markov model. For each one of
the states we generate a unique group for all messages with the same number of tokens.
If all messages within a group contain the same token at a specific position, this token is
fixed as a constant. On the contrary, we consider tokens that differ even if only once as
variables and its position is defined as a field. As a result, each state of the Markov model
is associated with a series of templates that represent the generic type of messages that
may be observed at such state of the communication.

State As State B¢ State Cs
Session 1 |[ftp 3.14 USER anon 331 User anon ok
Session 2 |[ftp 3.12 USER ren 331 User ren ok

Sessionn|ftp 2.0 USER liz 331 User liz ok
Template |ftp [ USER [] 331 User [] ok

Fig. 2: Example of template generation for a simplified FTP communication.



Figure 2 presents a generic example of the process based on a series of FTP messages
from different sessions.

Data Flow. Once the session information, the Markov model and the message templates
are defined, we infer a set of rules to characterize the flow of information between
different messages during a session. More specifically, we establish dependencies so that
data found in a preceding message can be used to fill the different fields in a subsequent
message.

In particular, we consider each possible combination of template occurrences for
the horizon of length k = 2, i.e. (t_o,t_1, %) and find all messages assigned to these
k templates which are sent in a session in this exact order. For each field f in such
templates, we look for a rule that let us fill f with data content of a different field from
previous messages. If no rule matches, the tokens are recorded and a new data rule is
defined, indicating how to fill f with a random choice over previously seen data.

Table 1 describes the different type of rules we have implemented in our system. For
instance, in the example from Figure 2 the field associated with the state C can be filled
with the field of the previous message in all cases.

Rule Description
Copy Exact copy of the content of one field to another.
Seq. Copy of a numerical field incremented by d.
Add Copy the content of a field and add data d to the front or
back.
Part Copy the front or back part of a field split by separator s
Data Fill the field by randomly picking data d which we have
seen before.

Table 1: Rules checked during model building. Parameters like d and s are automatically
inferred from the training data.

2.2 Test Case Generation

Up to this point, PULSAR is able to simulate both ends of the communication with high
accuracy. Furthermore, the templates and fields in our model give us the opportunity to
feed the other side of the connection with faulty inputs at a certain point in a session.
By applying fuzzing primitives to the data provided by the rules, we can send an ill
formatted message when the service expects to parse a variable data field controlled by
the remote side.

In particular, the system proceeds as follows: When a message from the other end
of the communication is received, it is matched to one of the templates of the states for
which a valid transition exist. As the state machine of the protocol is defined as a Markov
model of second order, a valid transition is represented by the new matched template and
the two previously matched templates in the form of a chain A:B:C. This means that if
templates A and B have been observed, our system will try to match a received message



to the template C that allow this transition. The set of rules for this transition is used by
the system to build the next message in the case that a response is required.

In some cases, the received message at a certain stage of the communication may
differ from that observed in the training data. As a result, some tokens or bytes may not
allow for an exact template match even if the semantics of the message are expected by
the model. Thus, to trigger a transition we use the Levenshtein string distance to measure
the similarity between the received message and all reachable templates and select the
most similar template as a match. This type of semi-valid transition has two effects. In
the first place, the probability of reaching a “fuzzable” state is increased and second, if
the semantics from the similarity matched template are too far from the semantics of
the correct message, the response can be understood as a faulty input in itself. From the
fuzzing perspective this is equivalent to a jump to an erroneous state in the real state
model of the protocol. This situation may also led to errors in implementations where
the network service is not able to handle a wrong sequence of messages during a session
or a message from a different session.

After selecting a template D , we use the rules describing the transition B:C:D in
combination with a fuzzing primitive to build the next message. Possible primitives to
select during testing include: invalid UTF-8 byte sequence, constant string overflow or
random string overflow with or without a percentage of non-alphanumeric characters. A
modular architecture allows for new fuzzing primitives to be added by the community to
our open-source tool independently of the fuzzer implementation.

2.3 Model Coverage

A classic problem shared by random and more advanced model-based fuzzers is that of
achieving a high coverage of the testing space. In the case of PULSAR, the system is
able to fuzz the communication but also to be an active part of it as a network service.
This allow us to guide the interaction between both ends and can be exploited in order to
reach in less time those states where messages can be fuzzed.

After a message has been received and matched to a template, we must select a valid
response template. For the purpose of simulating traffic as closed as possible to the real
protocol the response template can be chosen according to the probability observed for
each transition in the training data. However, when a fuzzing session is active, we define
the fuzzing subgraph (FS) algorithm to effectively select the next response.

The FS algorithm controls the progress of the fuzzer across consecutive iterations
and along the different states of the model, that is, new connections initiated by the
application under test when a session is terminated. Its ultimate purpose is not only to
increase the exploration of the model but to reach fuzzable states faster.

The algorithm proceeds as follows:

1. When a new fuzzing process is started, a fuzzing mask is assigned to each one of
the templates. A fuzzing mask is a binary array of size equal to the number of fields
in a template and indicates what fields are to be fuzzed the next time this template
is selected to build a message. If a template has N fields, there exist 2/ possible
fuzzing masks for each one of the templates. Initially, each mask is set to 2'.



2. A subgraph is defined by a root state and all the states that can be reached in D
transitions. The fuzzing weight of the subgraph is defined as the sum of the weights
of its states. The weight of a state is computed as the sum of the fuzzing masks of
its templates at a certain point in time.

3. When a message is received and matched, the state with the highest subgraph weight
is selected from all states that represent a valid transition. The response template is
chosen from this state according to the probability of occurrence in the training data.

4. The communication continues until a fuzzable state is reached. When a template is
selected for fuzzing its fuzzing mask is decreased by one.

Modifying the fuzzing mask changes what fields of a template are fuzzed the next
time the template is selected. Moreover, it also decreases the fuzzing weight of its state
and previous states’ subgraphs. As a result, the paths in the model with more fuzzing
opportunities at early stages will be walked first. As the fuzzing masks of these templates
decrease, the weight of the subgraph will also decrease, allowing for the exploration of
adjacent paths in the model. If all states reachable from the current state through a valid
transition have the same subgraph weight, we select the next state randomly.

3 Case Studies

We proceed to demonstrate the capabilities of PULSAR in two case studies with real-
world protocols. In particular, we evaluate our method’s ability to derive stateful fuzzers
for the well-known protocol FTP (Section 3.1) as well as for the proprietary protocol
OSCAR as used by different instant messengers (Section 3.2).

3.1 Core FTP Client

At first, we evaluate our method’s ability to automatically discover vulnerabilities in
implementations of a classic text-based protocol. To this end, we employ PULSAR to
identify flaws in the Core FTP Client?, a commercial, closed-source FTP client. This
program has been found to contain several buffer overflow vulnerabilities, providing us
with up-to-date ground truth for our analysis.

In June 2014, Gabor Seljan reported several heap-based buffer overflows in the Core
FTP Client that can possibly be exploited by attackers to run arbitrary code in the context
of the FTP client (CVE-2014-4643). These buffer overflows can be triggered by
sending overly long responses to client requests in various stages of the communication.
Clearly, to trigger these vulnerabilities the client needs to transition into the vulnerable
state. Hence, suitable responses must be returned by the server and thus Seljan manually
prepared a sequence of server responses in his proof-of-concept exploit.

In order to automatically identify these vulnerabilities in the FTP client, we record
987 traces from usual interaction between the client and the server running vsftpd?.
Based on these traces PULSAR automatically generates the state machine depicted in

2 http://www.coreftp.com
3 http://vsftpd.beasts.org



Figure 3 as well as the corresponding message templates and rules. States containing
templates with variable fields are shaded for both ends of the communication.

Every state in the state machine is labeled according to the terminology defined by
the Markov model: Namely, the observed event that triggers the transition to that state
and the event that is generated from this state. For instance, an event labeled X . UAC,
Y . UAS indicates that a message from the client UAC has been observed and a response
from the server UAS is required at this stage and vice versa. X and Y indicate the cluster
identifier of the messages and the templates associated with that state. In case that
templates without fixed tokens are assigned to that state the identifier is set to =. This
also implies that the template is formed only by fields split by separators.

Template 150
%20

26‘tokens opening
2 fields 220
BINARY
%20
mode
%20
data
%20
connection
%20

for

%20

)

%20

%20
bytes$29.
20D%0A
226

320
Transfer
%20
complete
20D%0A

Fig. 3: State machine and example of template generated from FTP traces. The template
contain 26 tokens and 2 of them are identified as variable fields.

By using the state machine generated by PULSAR we are able to trigger all of the 6
vulnerabilities reported by Seljan in the scope of CVE-2014-4643 and two previously
unknown buffer overflows vulnerabilities. Note that our approach does not require any
prior knowledge of the FTP protocol or programming to trigger these bugs. Instead, it
merely requires an independently learned state machine in order to impersonate a FTP
server and have the client connect to it.

Figure 4 shows the two message sequences exchanged between the client and the
fake FTP server—mimicked by PULSAR—resulting in the discovery of the two buffer
overflows. In both sequences PULSAR first imitates the login procedure, allowing the



FTP Client PULSAR
Matching  Markov Model
Template State

Empty message (timer) [ oo _______ 25 START | *.UAC "
™ FTP Client PULSAR
220 (vsFTPd 3.0.2) 12 *UAC | ".UAS Matching Markov Model
Tempiate state
USER 32 *.UAS | “.UAC Empty message (timer)  f-------------oo > 25 START | “.UAC
331 Please specify 14 *UAC | *.UAS 220 (vsFTPd 3.0.2) 12 "UACI*.UAS
the password.
PASS ##*xws 32 *UAS | *.UAC USER 32 *.UAS | *.UAC
230 Login 12 *UAC | *.UAS 331 Please specify 14 "UAC | *.UAS
successful. the password.
SYST 31 *UAS | “.UAC PASS xkxkakx 32 *.UAS | *.UAC
215 UNIX Type: L8 13 *UAC | *.UAS 230 Login 12 ".UAC|".UAS
successful.

PWD 31 *UAS | “.UAC SYST 31 *UAS|*.UAC
257 /" 1 “UAC | *.UAS 215 UNIX Type: L8 13 “.UAC | ".UAS
PORT 10,0,0,4,87,73 32 *.UAS | *.UAC PWD 31 ".UAS|*.UAC
213 20140716235750 11 “.UAC|*.UAS 257 "/" 1 “.UAC | “.UAS
LIST 31 *.UAS| *.UAC PORT 10,0,0,4,58, 32 ".UAS | *.UAC

CRASH < 13 *.UAC | *.UAS CRASH < 14 *UAC|".UAS

(a) Messages triggering a crash after a LIST command.  (b) Messages triggering a crash after a PORT command.

Fig. 4: Sequences of messages sent and received by the Core FTP client and PULSAR
which lead to the termination of the client as a result of buffer overflows when the
responses to the LIST and PORT commands are parsed.

client to authenticate itself by issuing a USER followed by a PASS command. The client
then issues a PWD command in order to determine the current working directory to which
the fake server responds with a seemingly valid directory. Next the client attempts to
enter active mode by sending the PORT command to the server.

At this point in the communication the message sequences of Figure 4(b) and 4(a)
diverge. While in Figure 4(b) PULSAR immediately responds with an overly long string
causing the client to crash, in Figure 4(a) a valid response is sent back to the client and
the dialog is kept alive. Subsequently the client issues the LTST command and crashes
as result of an overly long response. Note that the client only crashes in response to
the LIST command after entering active mode while remaining operational in passive
mode. This highlights the necessity of stateful fuzzing to identify vulnerabilities located
at deeper levels of the state machine.

3.2 Pidgin ICQ/AIM

In our second experiment, PULSAR is employed to learn a state machine for the Open
System for Communication in Realtime (OSCAR) protocol, a lesser known binary
protocol used by the AOL Instant Messenger and ICQ. OSCAR is an exceptionally
complex protocol with a login procedure that comprises four stages and involves two
independent servers, the authorization server and the BOS server. The authorization
server has the responsibility to verify user credentials, generate an authorization cookie
and redirect to a BOS server for all further processing.

In the past, several vulnerabilities in processing of BOS server messages have been
identified in the popular instant messengers Pidgin and Adium. In particularly, several
remotely triggerable crashes are known, which result from insufficient validation of
UTE-8 strings sent to the client by the BOS server (CVE-2011-4601). We explore

10



START

Fig. 5: Markov Model from OSCAR traces.

whether PULSAR is capable of automatically triggering these bugs, by generating a state
machine for the BOS server from 512 network traces. To ensure that our BOS server
is contacted, a firewall rule for net filter is used to redirect all traffic sent to the real
BOS IP address to our server, thus allowing the client to perform the first login stage with
a real authorization server but effectively redirecting to our system all further requests
issued from the client to the real BOS server.

Figure 5 shows the state machine learned for the communication between the
ICQ/AIM client and the BOS server on port 5190. For clarity, large paths without
fuzzable states are shown piled. The path through the model from the beginning of the
communication to the state where the fuzzed message triggers the error in the client is
highlighted.

Figure 6 shows in more detail the sequence of messages exchanged between Pidgin
and the fake BOS server simulated by PULSAR. In combination with the Markov model
it can be seen how the system is able to correctly complete the protocol negotiation phase
with the client. After this phase, the client considers itself completely authenticated and
the user can start interacting with the application. When the user requests to add a buddy

11



Pidgin PULSAR

Matching Markov Model

Template State
SNAC(00,01) ’—»J 16 STARTI43.UAC

Protocol i I i
Negotiation . > !
|
SNAC(01,08) > 139 32.UAS113.UAC
SNAC(01,0F) < 76 13.UAC | 43.UAS
SNAC (01, 0E) > 6 43.UAS | 47.UAC
SNAC(13,03) - 10 47.UAC | 49.UAS
SNAC(02,04) > 55  49.UAS|63.UAC
SNAC(01,21) < 92 63.UAC | 5.UAS
SNAC(13,11) > 159  5.UAS | 44.UAC
SNAC(01,21) < 18 44.UAC|44.UAS
SNAC(01,04) > 142 44.UAS | 44.UAC
SNAC(13,09) 57  44.UACI|*.UAC
Empty message it b e Rt | 102 *UAC | *.UAS
SNAC(13,18) > 39 *UAS | *.UAC
SNAC(01,21) < 121 *UAC | *.UAS
SNAC(13,08) > 40 *UAS | *.UAC
CRASH < 106  *.UACI*.UAS
v v

Fig. 6: Sequence of messages sent and received by the ICQ/AIM client and PULSAR
to produce a crash as a result of a missed format verification when parsing a negative
response to a buddy list request.

to the list, our system fuzzes the response with an invalid UTF-8 sequence that triggers
the crash of the client.

In summary, this experiment shows that PULSAR is capable of learning even complex
and unusual binary protocols and trigger vulnerabilities deep within the state machine.

4 Limitations

Our experiments show that PULSAR is capable of identifying security flaws inside
protocol implementations. Since the discovery of vulnerabilities, however, cannot be
fully automated in the generic case due to Rice theorem [29], our method naturally has
certain limitations. In this section, we examine these limitations and discuss possible
improvements.

Our system strongly relies on the comprehensiveness and completeness of the ob-
served network traffic and is thus unable to model protocol paths which do not occur in
this traffic. This is a common problem of automatic inference approaches and can not be
completely solved. Yet, it can at least be alleviated by incorporating knowledge about the
protocol under test. For example, the analyst can specifically induce and record protocol
functionality that is security sensitive or might be prone to vulnerabilities. Moreover,
depending on the particular environment, the analyst may change relevant parameters

12



of the protocol, such as addresses and usernames, to help constructing corresponding
templates and rules in the model.

Similarly, our approach does not reconstruct type information of fields which can be
help to significantly reduce the range of tested values, thus improving the efficiency of
fuzzing. As a remedy, the analyst might manually assign types to certain fields. However,
the presented results show that our approach is already capable to identify vulnerabilities
without this information—thereby compensating the lack of type information.

As most network monitoring approaches, PULSAR is unable to deal with encrypted
network traffic. Although this problem can not be solved in general, it might in some cases
be possible to inspect traffic through a proxy that acts as man in the middle. The model
can then be learned from the collected traffic prior to forwarding it to the destination.
Similarly, the final fuzzing can be conducted by transmitting fuzzed messages directly
through the proxy.

5 Related Work

PULSAR unites two research areas from computer security in the scope of network
protocols: First, we reverse engineer the protocol by automatic inference and second,
based on the learned specification fuzzy testing is applied to the communications parties
in order to reveal security vulnerabilities in the implementations. In the following we
attempt to provide an overview of work conducted in these two vivid fields of research.

Protocol Re-engineering. Originally, the task of reverse engineering a network protocol
has been a time-consuming, demanding and above all, manual task. Over almost a decade
of research, however, the community has significantly advanced this field by proposing
numerous techniques for automating the task of protocol re-engineering.

Nowadays, state-of-the-art methods can be divided into two orthogonal strains of
research: On the one hand, methods that utilize and instrument an existing implemen-
tation based on, for instance, dynamic taint-analysis [6, 9, 11, 24, 28, 34] and on the
other hand, those that attempt to derive the protocol specification from recorded network
data only [8, 10, 19, 20, 22, 23, 33]. The task of deriving a protocol model is espe-
cially challenging in case the analyst does not have access to a concrete implementation
showcasing the protocol interaction, but network recordings only. This exactly is the
specific field of operation PULSAR acts in and therefore, we subsequently discuss this
line of research in more detail. Another key distinction can be made between state-
less [5, 10, 20] and stateful protocol inference [8, 19, 23, 33]. Common to all approaches
on reversing engineering network protocols is the need to differentiate variable from
constant segments in the transferred data. In this respect many methods are based on
or influenced by early work from Beddoe [4] and the Protocol Informatics Project [3]
where sequence alignment algorithms from the field of bioinformatics were used to break
up the protocol’s messages into their individual components.

Roleplayer [10], for instance, extends this by certain heuristics for identifying IP
addresses and domain names. In essence the method does not respect temporal states
but already addresses the need for inter-field relations. Leita et al. [23] present a system
(ScriptGen) that also makes use of sequence alignment algorithms but splits up its
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application over two phases of different granularity. A later extension of ScriptGen [22]
is more relevant in our context. The authors enhance the approach such that it is able
to address intra- as well as inter-protocol dependencies of variable fields and contents.
This is particularly important for keeping alive recreated dialogs in a meaningful way.
PRISMA [19]—the protocol inference framework we chose to build our method on—is
able to accomplish this as well. Similarly, the authors of [33] make use of a Markov
model and a layered application of the sequence analysis proposed by Beddoe just as
ScriptGen does. Unfortunately, this approach is not able to relate variable fields over
temporal states.

Protocol Fuzzing. Using fuzz testing it is possible to uncover security flaws in software
by strategically generating input in an automated fashion [see 32]. Two levels of ab-
straction can be discriminated here: (a) black-box fuzzing [35] where a tester observes
the software from the “outside” only seeing what in- and output is passed in or out
respectively, and (b) white-box fuzzing [13] that allows the tester to inspect the code
(either binary or source code) and for instance, make use of symbolic execution and
constraint solving.

This separation obviously applies to protocol fuzzing as well. In this context however,
it is crucial to differentiate between stateless and stateful systems. Fuzzing multi-party
communication in a completely random fashion is foredoomed to fail. Only with the
knowledge of the protocol’s states and semantics at hand it is possible to navigate the
fuzzer through the communication. This lead to stateful network fuzzers like KiF [1],
SNOOZE [2] or Peachfuzzer [9, 12], whereby one differentiates special purpose [1],
specification-based [e.g., 12] and model-based [e.g., 9, 14, 17] fuzzers. The latter kind
is usually powered by protocol inference as discussed in the previous paragraph and
as implemented by PULSAR. Our approach differs from this work in that it operates in
absence of the code and the specification for a protocol and thus comes handy in cases
where proprietary protocols are used, for example, in embedded systems.

Closest to PULSAR are the approaches AutoFuzz [14] and the system described by
Hsu et al. [17], which both also infer the protocol state machine and message formats
from network traffic alone. Although these approaches share the same practical setting
with PULSAR, they do not make use of the inferred information for fully simulating
communication, likely due to the absence of dependence rules that enable us to let data
flow between protocol states.

6 Conclusion

Finding vulnerabilities in the implementations of proprietary protocols is a challenging
problem of computer security. In this paper, we present a novel method for black-
box fuzzing that can help to spot vulnerabilities in protocol implementations, even if
neither the code nor the specification of the protocol are available. To this end, our
method PULSAR builds on concepts of protocol reverse engineering and simulation
that enable us to automatically infer and guide fuzzers for proprietary protocols. Our
evaluation demonstrates the utility of such fuzzers, where we identify vulnerabilities in
the implementations of a text-based and a binary protocol.
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While we have applied PULSAR against rather common network protocols, the
method is also suitable for searching bugs in unusual implementations, such as in
embedded devices inside cars and industrial control systems. Due to the capability of
operating without code and specification, a collection of network traces is sufficient for
PULSAR to infer a first fuzzer for an unknown protocol. Moreover, the simple design
of the generative model inferred by PULSAR also enables a practitioner to inspect and
manually refine the model which provides a bridge to regular fuzzing with manually
crafted protocol grammars.
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